Arduino for the Arts

Fred Cahill, Shawn Nock

Unlondon Digital Media Assoc.

What's in your kit?

- Arduino Uno R3 Clone
- Solderless Breadboard
- Connecting wires
- LEDs
- Resistors, Potentiometer
- Buzzer
- IR Remote
- IR Receiver

$\mu {\rm C} + {\rm reset} \ {\rm button} + {\rm led} + {\rm USB} \ {\rm communication}$

It's a kit (on a board) with the bare minimum components to easily use the μ C hardware. They do the basic, boring design needed for any board, so users only need to add the neat stuff.

The Arduino variety that we are using is the Arduino UNO.

- Processor: Atmel Atmega328p
- Memory: 2K RAM + 32K Flash
- FT232RL Logic-level Serial \leftrightarrow USB Chip

The Arduino folks also adapted an *Integrated Development Environment* (IDE) to their boards. This IDE allows users to easily write programs for their boards and then write the programs to the μ C.

Get the Arduino IDE:

https://www.arduino.cc/en/Main/Software

Circuit Basics

- One way value for current¹
- LED \equiv Light Emitting Diode
- Band marks (-)²
- Longer leg marks (+)

https://learn.sparkfun.com/tutorials/diodes

²https://learn.sparkfun.com/tutorials/polarity/diode-and-led-polarity

- Diodes don't limit current
- Diodes aren't perfect (some current turned to heat)
- Too much current = Too much heat = BANG
- How do we limit current?

- Resist the flow of current
- Needed for LEDs: $\approx 400 \,\Omega$ (safe for $\leq 6 \,V$)
- Button Pull-up/down: $\geq 10 \, k\Omega$
- Color coded, Google it

Ohm's Law relates current to potential and resistance.

$$V = IR$$
$$I = \frac{V}{R}$$
$$R = \frac{V}{I}$$

- V = Potential in Volts (V)
- I = Current in Amperes (A)
- R = Resistance in Ohms (Ω)

The datasheet for an LED says that the maximum continuous current is 15 mA. Your circuit operates at 5 V^1 . How big should your resistor be?

$$\Omega = \frac{5 \,\mathrm{V}}{0.015 \,\mathrm{A}} = 333.\overline{3}\Omega$$

How much current for our cheet sheet value?

$$A = \frac{5 V}{400 \Omega} = 12.5 \text{ mA}$$

 $^{^{1}}$ Actually, this calculation is inaccurate. LEDs will have a *forward voltage drop* of between 300 mV and 700 mV this should be subtracted from V above... but it's not critical.

- Buttons connect or disconnect two wires/parts
- Momentary Switch: Normally Closed (NC), Normally Open (NO)
- Toggle Switch

- Vcc: The power supply of the digital circuit elements
- GND: The reference voltage (usually 0 V)
- Connecting a part to Vcc = Logical 1
- Connecting to GND = Logical 0

Transducers turn electrical energy into another sort of energy:

Speaker	$Electrical \to Sound$	
Microphone	$Sound \to Electrical$	
LED	$Electrical \to Light$	
LED	$Light \to Electrical$	
Piezoelectric	$Electrical \to Motion$	

- Piezoelectric elements change shape when voltage is applied
- Thin discs can be made to oscillate and create sound.
- Contains oscillator circuit
- Two connections: Vcc, GND
- Use a switch; connected = annoying tone, disconnected = glorious silence

The power supply provides the energy to drive the system *and* defines logical 1.

Can be a:

- Voltage Regulator (converts one potential to another)
- Batteries (Lemon, NiMH, LiPo)
- Solar Panel

In our circuits, your laptop is converting it's power source to 5V and delivering power to our circuit via USB. You also have a battery pack for computer-free shenanigans.

μ Controller

Microcontroller (μ C) is a *processor*, *memory* and a few *peripherals* on a standalone chip.

Processor is a group of transistors that understands a few dozen commands (ADD, SUB, JUMP..)

Memory a circuit that can hold values.

Peripherals Vary chip to chip, but often include timers, radios, communication interfaces

Seems complicated, but really simple. They literally read a command (and data) from memory, then execute the command. At the end of the command, the next command is read from the next memory cell and the process is repeated¹

¹some commands change the next command memory address

Let's start programming

Configure Arduino

:h	<u>T</u> ools <u>H</u> elp		
£	Auto Format	Ctrl+T	
	Archive Sketch		
28	Fix Encoding & Reload		
	Serial Monitor	Ctrl+Shift+M	
{ ∵s	Serial Plotter	Ctrl+Shift+L	
·m	Board: "Arduino Nano"	>	Boards Manager
	Processor: "ATmega328"	>	Adding AVD Baseda
	Port	>	Aldullo AVR Doalds
	Brogsommert "AV/BISB mkll"		Aldullo full
	Programmer. Avkise mkn	,	
	Burn Bootloader		Arduino Duemilanove or Diecimila
			 Arduino Nano
			Arduino/Genuino Mega or Mega 2560
			Arduino Mega ADK
			Arduino Leonardo

- Board: Arduino UNO
- Processor: ATmega328
- Port: ...

The Code Environment


```
/* the setup function runs once on reset / power */
void setup() {
   /* set pin 13 as an output */
   pinMode(13, OUTPUT);
}
```

```
/* the loop function repeats forever */
void loop() {
   digitalWrite(13, HIGH); // turn on LED
   delay(1000); // wait for a second
   digitalWrite(13, LOW); // turn the off LED
   delay(1000); // wait for a second
}
```

Buzzer: Hardware

23

#define BUZZER 8 /* Make BUZZER same as pin 8 */

```
void setup() {
 pinMode(BUZZER, OUTPUT);
 digitalWrite(BUZZER, HIGH); /* Turn off buzzer */
}
void loop() {
 digitalWrite(BUZZER, LOW);
                                 /* Turn on buzzer */
 delay(100);
                                  /* wait for 100ms */
 digitalWrite(BUZZER, HIGH); /* Turn off buzzer */
 delay(900);
                                      /* wait 900ms */
}
```

Push Button: Hardware


```
#define BUTTON 7
```

```
#define BUZZER 8
```

```
int button_state = 0;
```

```
void setup() {
   pinMode(BUTTON, INPUT);
   pinMode(BUZZER, OUTPUT);
   digitalWrite(BUZZER, HIGH);
}
```

```
void loop() {
  button_state = digitalRead(BUTTON);
  if (button_state == HIGH) {
    digitalWrite(BUZZER, LOW);
  } else {
    digitalWrite(BUZZER, HIGH);
  }
}
```

Questions?