Introduction to Art Engineering

Medway High School

Fred Cahill, Shawn Nock

Unlondon Digital Media Assoc.

Goals

- Science, technology, engineering and maths; in service of Art.
- Allows unprecedented interaction
- Opens doors to new funding sources, non-traditional gallery space.

Unlondon

Shawn: Biohacking

"...she explores the boundaries between technology, society, and creative expression, using her unique perspective to try and help illuminate what makes us human." ¹

- Eclipse
- Forest
- Zen Photon Garden

¹Micah's Portfolio Website: misc.name

"With a background in fine art, world music, and carpentry, Kim Alpert" brings an attention to detail and diverse style to her work." ²

Bodyphonic @ National Music Center, Calgary

²Kim's Portfolio Website: http://aestheticengineer.com

What's in your kit?

- Arduino Uno R3 Clone
- Solderless Breadboard
- Connecting wires
- LEDs
- Resistors, Potentiometer
- Buzzer
- IR Remote
- IR Receiver

$\mu {\rm C} + {\rm reset} \ {\rm button} + {\rm led} + {\rm USB} \ {\rm communication}$

It's a kit (on a board) with the bare minimum components to easily use the μ C hardware. They do the basic, boring design needed for any board, so users only need to add the neat stuff.

The Arduino variety that we are using is the Arduino UNO.

- Processor: Atmel Atmega328p
- Memory: 2K RAM + 32K Flash
- FT232RL Logic-level Serial \leftrightarrow USB Chip

The Arduino folks also adapted an *Integrated Development Environment* (IDE) to their boards. This IDE allows users to easily write programs for their boards and then write the programs to the μ C.

Get the Arduino IDE:

https://www.arduino.cc/en/Main/Software

Circuit Basics

Current is the flow of charge through a circuit. Conventionally we think of this as happening from + to - of the power supply of the circuit.

Voltage is how fast the current can move in the circuit. River metaphor:

- current = flow rate: (L s⁻¹)
- voltage = change in height: (m)

Other devices in a circuit can impede / effect current flow. We'll call them $\mbox{resistance}(s).$

Circuit Devices

- One way value for current¹
- LED \equiv Light Emitting Diode
- Band marks (-)²
- Longer leg marks (+)

https://learn.sparkfun.com/tutorials/diodes

²https://learn.sparkfun.com/tutorials/polarity/diode-and-led-polarity

- Diodes don't limit current
- Diodes aren't perfect (some current turned to heat)
- Too much current = Too much heat = BANG
- How do we limit current?

- Resist the flow of current
- Needed for LEDs: $\approx 400 \,\Omega$ (safe for $\leq 6 \,V$)
- Button Pull-up/down: $\geq 10 \, k\Omega$
- Color coded, Google it

- Buttons connect or disconnect two wires/parts
- Momentary Switch: Normally Closed (NC), Normally Open (NO)
- Toggle Switch

- Vcc: The power supply of the digital circuit elements
- GND: The reference voltage (usually 0 V)
- Connecting a part to Vcc = Logical 1
- Connecting to GND = Logical 0

Transducers turn electrical energy into another sort of energy:

Speaker	$Electrical \to Sound$
Microphone	$Sound \to Electrical$
LED	$Electrical \to Light$
LED	$Light \to Electrical$
Piezoelectric	$Electrical \to Motion$

- Piezoelectric elements change shape when voltage is applied
- Thin discs can be made to oscillate and create sound.
- Contains oscillator circuit
- Two connections: Vcc, GND
- Use a switch; connected = annoying tone, disconnected = glorious silence

The power supply provides the energy to drive the system *and* defines logical 1.

Can be a:

- Voltage Regulator (converts one potential to another)
- Batteries
- Solar Panel

In our circuits, your laptop is converting it's power source to 5 V and delivering power to our circuit via USB. You also have a battery pack for computer-free shenanigans (6 V).

μ Controller

Microcontroller (μ C) is a *processor*, *memory* and a few *peripherals* on a standalone chip.

Processor is a group of transistors that understands a few dozen commands (ADD, SUB, JUMP..)

Memory a circuit that can hold values.

Peripherals Vary chip to chip, but often include timers, radios, communication interfaces

Seems complicated, but really simple. They literally read a command from memory, then execute the command. At the end of the command, read the next command from the next memory cell and repeat³

³some commands change the next command memory address

If one end of an LED is connected to ground, and the other end is connected to a pin on a $\mu{\rm Controller},$ then:

If the μ C sets the pin HIGH (5 V) then current will flow from the pin through the LED to GND, if LOW (\$0 V) then the current will not flow and the LED is off.

Let's start programming

Configure Arduino

<u>T</u> ools <u>H</u> elp		
Auto Format	Ctrl+T	
Archive Sketch		
Fix Encoding & Reload		
Serial Monitor	Ctrl+Shift+M	
Serial Plotter	Ctrl+Shift+L	of the potentiometer
Board: "Arduino/Genuino Uno"	•	Boards Manager
Port	►	Arduino AVR Boards
Programmer: "AVRISP mkII"	•	🔿 Arduino Yún
Burn Bootloader		💿 Arduino/Genuino Uno
		🔿 Arduino Duemilanove or Diecimila
		🔿 Arduino Nano
		🔿 Arduino/Genuino Mega or Mega 2560
		🔿 Arduino Mega ADK
		🔿 Arduino Leonardo

- Board: Arduino UNO
- Processor: ATmega328
- Port: . . .

The Code Environment


```
/* the setup function runs once on reset / power */
void setup() {
   /* set pin 13 as an output */
   pinMode(13, OUTPUT);
}
```

```
/* the loop function repeats forever */
void loop() {
   digitalWrite(13, HIGH); // turn on LED
   delay(1000); // wait for a second
   digitalWrite(13, LOW); // turn the off LED
   delay(1000); // wait for a second
}
```

Questions?