




Designed for +-Vbatt/2 Output (INA is only gain element) May damage ADC if input range is <= +-VBATT/2

R204, R213: 0.1% R208, R209: 1%

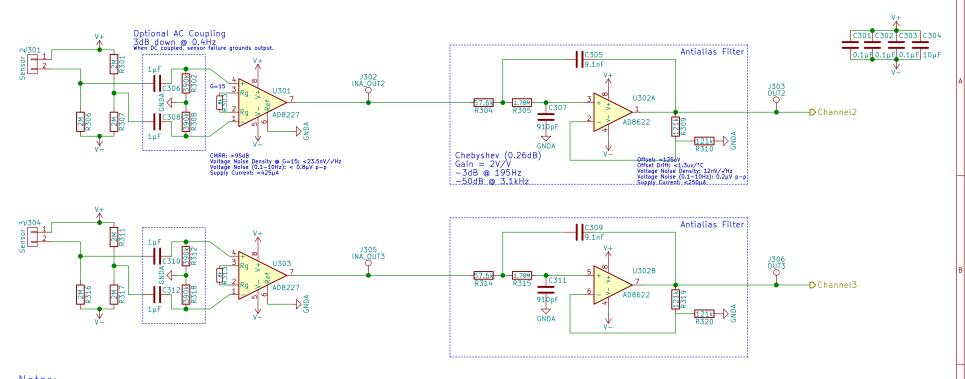
R202, R205, R206 & R203, R207: Metal Foil / Thin Film (Resistor packs preferred)

USB-1208FS has fixed single-ended range of +- 10V
 Reduces ENOB to 11 if running on 5V supply
 Drop in upgrade to USB-1608FS (16bit and variable range)

- Can be substantially mitigated initially by running on 18V via two 9V batteries.

ALL C: 5%, 16V

Open Questions:


- 1. Trimming the bridge.
- Only makes sense w/ DC coupling
- Baď tempco
- Bad UX
- Needed for significant gain
- 2. AC vs DC Coupling; both have advantages: AC is easier
- 3. Reducing R202,R203,R206,R207 to decrease Johnson noise: Probably useless.
- Changing R202,R206 may break INAMP CMRR
- 4. Use chopper amps in signal path: Probably bad
  Lower total noise for \*extremely\* small bandwidths (<5Hz?)</li>
  Lower offset (if DC coupled)
- 5. Driven shields for output: Probably useless
  - Reduce error due to leakage current
- No analysis done to determine if this is significant
  Current DAQ isn't likely to benefit

- (Initial) DAQ is MCC USB-1208FS (available at BMI) 11-bit, max 6250 S/sec for each channel; sequential
- Target Bandwidth: 195Hz
- Sampling Rate 6240 S/s
  Sensor resistance 2MΩ
- Respiration motion changes sensor resistance by < -+10%

# Analysis Notes:

- 1. Steep digital filter 0.4-175Hz
- Respiration typically 0.25-0.33Hz
- Narrower useful bandwidth likely, modeling needed.
- 2. Correct for temporal offset of sample due to sequential sampling.
- 3. 2x decimation for 13-bit (ENOB) and noise reduction

Monadnock Systems Sheet: /channel0-1/ File: channel0.sch Title: Input Channel 0 & 1 Size: USLetter Date: 2017-03-26 Rev: AB KiCad E.D.A. kicad 4.0.6 ld: 2/5



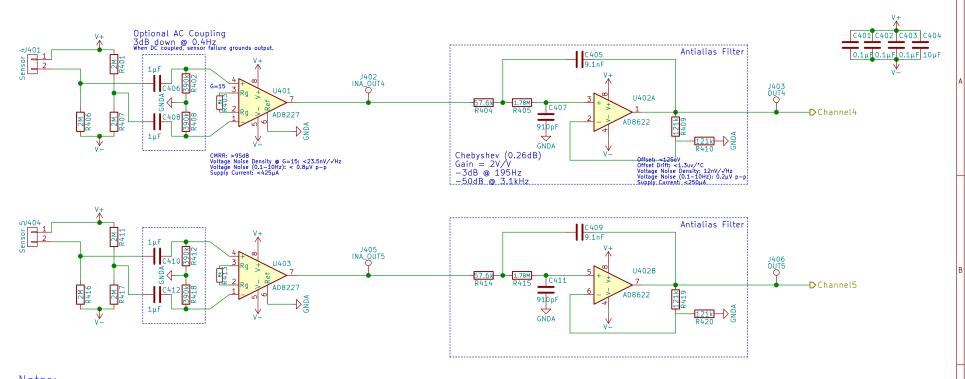
Designed for +-Vbatt/2 Output (INA is only gain element) May damage ADC if input range is <= +-VBATT/2

R204, R213: 0.1% R208, R209: 1%

R202, R205, R206 & R203, R207: Metal Foil / Thin Film (Resistor packs preferred) ALL C: 5%, 16V

#### Open Questions:

- USB-1208FS has fixed single-ended range of +- 10V
  Reduces ENOB to 11 if running on 5V supply
  Drop in upgrade to USB-1608FS (16bit and variable range)
- 1. Trimming the bridge. - Only makes sense w/ DC coupling
- Can be substantially mitigated initially by running on 18V via two 9V batteries.


- Baď tempco - Bad UX
- Needed for significant gain
- 2. AC vs DC Coupling; both have advantages: AC is easier
- 3. Reducing R202,R203,R206,R207 to decrease Johnson noise: Probably useless.
- Changing R202,R206 may break INAMP CMRR
- 4. Use chopper amps in signal path: Probably bad
  Lower total noise for \*extremely\* small bandwidths (<5Hz?)</li>
  Lower offset (if DC coupled)
- 5. Driven shields for output: Probably useless
  - Reduce error due to leakage current
- No analysis done to determine if this is significant
  Current DAQ isn't likely to benefit

- (Initial) DAQ is MCC USB-1208FS (available at BMI) 11-bit, max 6250 S/sec for each channel; sequential
- Target Bandwidth: 195Hz
- Sampling Rate 6240 S/s
  Sensor resistance 2MΩ
- Respiration motion changes sensor resistance by < -+10%

# Analysis Notes:

- 1. Steep digital filter 0.4-175Hz
  - Respiration typically 0.25-0.33Hz
- Narrower useful bandwidth likely, modeling needed.
- 2. Correct for temporal offset of sample due to sequential sampling.
- 3. 2x decimation for 13-bit (ENOB) and noise reduction

| Monadnock Systems               |         |  |  |  |  |  |
|---------------------------------|---------|--|--|--|--|--|
| Sheet: /channel2-3/             |         |  |  |  |  |  |
| File: channel2.sch              |         |  |  |  |  |  |
| Title: Input Channel 0 & 1      |         |  |  |  |  |  |
| Size: USLetter Date: 2017-03-26 | Rev: AB |  |  |  |  |  |
| KiCad E.D.A. kicad 4.0.6        | ld: 3/5 |  |  |  |  |  |



Designed for +-Vbatt/2 Output (INA is only gain element) May damage ADC if input range is <= +-VBATT/2

R204, R213: 0.1% R208, R209: 1%

R202, R205, R206 & R203, R207: Metal Foil / Thin Film (Resistor packs preferred) ALL C: 5%, 16V

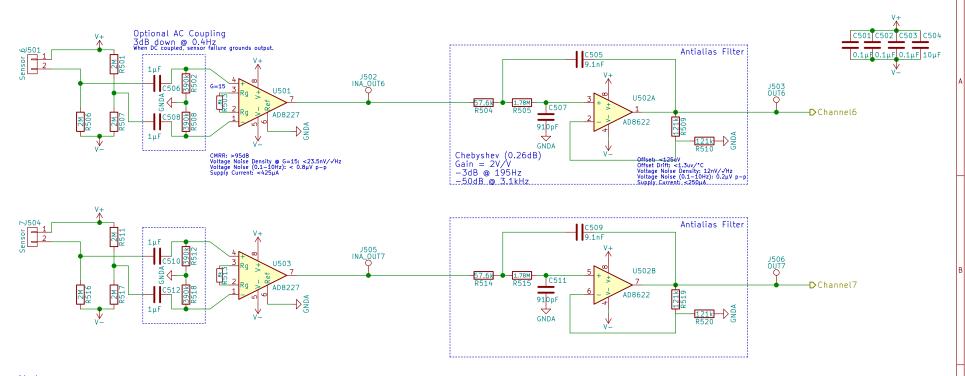
#### Open Questions:

- Baď tempco

- USB-1208FS has fixed single-ended range of +- 10V
  Reduces ENOB to 11 if running on 5V supply
  Drop in upgrade to USB-1608FS (16bit and variable range)

1. Trimming the bridge. - Only makes sense w/ DC coupling

- Can be substantially mitigated initially by running on 18V via two 9V batteries.


- Bad UX - Needed for significant gain
- 2. AC vs DC Coupling; both have advantages: AC is easier
- 3. Reducing R202,R203,R206,R207 to decrease Johnson noise: Probably useless.
- Changing R202,R206 may break INAMP CMRR
- 4. Use chopper amps in signal path: Probably bad
  Lower total noise for \*extremely\* small bandwidths (<5Hz?)</li>
  Lower offset (if DC coupled)
- 5. Driven shields for output: Probably useless
  - Reduce error due to leakage current
- No analysis done to determine if this is significant
  Current DAQ isn't likely to benefit

- (Initial) DAQ is MCC USB-1208FS (available at BMI) 11-bit, max 6250 S/sec for each channel; sequential
- Target Bandwidth: 195Hz
- Sampling Rate 6240 S/s
  Sensor resistance 2MΩ
- Respiration motion changes sensor resistance by < -+10%

# Analysis Notes:

- 1. Steep digital filter 0.4-175Hz
- Respiration typically 0.25-0.33Hz
- Narrower useful bandwidth likely, modeling needed.
- 2. Correct for temporal offset of sample due to sequential sampling.
- 3. 2x decimation for 13-bit (ENOB) and noise reduction

Monadnock Systems Sheet: /channel4-5/ File: channel4.sch Title: Input Channel 0 & 1 Size: USLetter Date: 2017-03-26 Rev: AB KiCad E.D.A. kicad 4.0.6 Id: 4/5



Designed for +-Vbatt/2 Output (INA is only gain element) May damage ADC if input range is <= +-VBATT/2

R204, R213: 0.1% R208, R209: 1%

R202, R205, R206 & R203, R207: Metal Foil / Thin Film (Resistor packs preferred)

USB-1208FS has fixed single-ended range of +- 10V
 Reduces ENOB to 11 if running on 5V supply
 Drop in upgrade to USB-1608FS (16bit and variable range)

- Can be substantially mitigated initially by running on 18V via two 9V batteries.

ALL C: 5%, 16V

# Problems:

#### Open Questions:

- 1. Trimming the bridge.
- Only makes sense w/ DC coupling
- Baď tempco
- Bad UX
- Needed for significant gain
- 2. AC vs DC Coupling; both have advantages: AC is easier
- 3. Reducing R202,R203,R206,R207 to decrease Johnson noise: Probably useless.
- Changing R202,R206 may break INAMP CMRR
- 4. Use chopper amps in signal path: Probably bad
  Lower total noise for \*extremely\* small bandwidths (<5Hz?)</li>
  Lower offset (if DC coupled)
- 5. Driven shields for output: Probably useless
  - Reduce error due to leakage current
- No analysis done to determine if this is significant
  Current DAQ isn't likely to benefit

- (Initial) DAQ is MCC USB-1208FS (available at BMI) 11-bit, max 6250 S/sec for each channel; sequential
- Target Bandwidth: 195Hz
- Sampling Rate 6240 S/s
  Sensor resistance 2MΩ
- Respiration motion changes sensor resistance by < -+10%

# Analysis Notes:

- 1. Steep digital filter 0.4-175Hz
- Respiration typically 0.25-0.33Hz
- Narrower useful bandwidth likely, modeling needed.
- 2. Correct for temporal offset of sample due to sequential sampling.
- 3. 2x decimation for 13-bit (ENOB) and noise reduction

# Monadnock Systems

Sheet: /channel6-7/ File: channel6.sch

# Title: Input Channel 0 & 1

| Title. Input channet o & 1 |                  |         |         |  |
|----------------------------|------------------|---------|---------|--|
| Size: USLetter             | Date: 2017-03-26 |         | Rev: AB |  |
| KiCad E.D.A. kicad 4.0.6   |                  | ld: 5/5 |         |  |
|                            |                  |         |         |  |